Math 8, Summer 2012 Exam 2

Name Perm No.

Short Ans.	
1	
2	
3	
Total	

Directions:

1. Each problem is graded out of 4 points.
2. Each short answer question is worth 1 point.
3. You're only allowed a writing instrument and your wits.
4. Proofs should be clean, to the point, and written in proper English sentences.

Short Answer

1. Let S be a set with a relation R. Precisely define what it means for R to be reflexive.
2. Evaluate the sum $\binom{5}{0}+\binom{5}{1}+\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}$.
3. Dirichlet stuffs 316 pigeons into 21 holes. What's the largest number of pigeons we are guaranteed to see in a single hole?
4. A trichotomous relation \simeq on a set S is one with the following property:

For all $x, y \in S$, exactly one of the following is true: $x \simeq y, y \simeq x$, or $x=y$. Give an example of such a relation.
5. Given an equivalence relation \sim on a set S and $x \in S$, define the equivalence class $[x]$.
6. Alice wants to prove $P(n)$ for all integers $n \geq 3$. She proves $\forall n \geq 3, P(n) \Rightarrow P(n+2)$. Which base cases are needed to complete the induction?
7. Which of these is an equivalence relation on \mathbb{R} ?
(a) $x \sim y \Longleftrightarrow x-y \in \mathbb{Q}$
(b) $x \sim y \Longleftrightarrow x \leq y$
(c) $x \sim y \Longleftrightarrow x+y \in \mathbb{Z}$
(d) $x \sim y \Longleftrightarrow \sin x=\cos y$
(e) None of the above
8. Give a precise statement of the well-ordering principle.

Problems

1. Prove for all integers $n \geq 0$

$$
\int_{0}^{\infty} x^{n} e^{-x} d x=n!
$$

Suggestion: Integrate by parts.
2. On a spherical surface, define a closed hemisphere to be a hemisphere which includes its edge as part of the set. Given 5 arbitrary points on the surface of a sphere prove there is a closed hemisphere containing 4 of them.

Suggestion: It is easier to find a hemisphere that contains three of the points. Do this first. A slight adjustment to the proof finds one containing four of them.
3. Fix a positive integer n. Given an integer $k \geq 0$ define $d(k)$ to be the number of permutations of k objects leaving no objects in their starting positions. Prove that

$$
\sum_{k=0}^{n}\binom{n}{k} d(k)=n!
$$

Suggestion: To permute n objects, you could first pick which objects move and which don't.

